1. Magnesium metal will react with acid to release Hydrogen gas as in the following equation:

$$
\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

a. If 0.8712 g Mg are reacted with ample HCl , how many grams of H_{2} will be relased?
b. At STP, how many Liters will the H_{2} from part A occupy?
c. H_{2} will combust with O_{2} as follows: $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

At STP, how many liters of $\mathrm{O}_{2(\mathrm{~g})}$ would be required to react with the H_{2} from part A?
2. A sealed 4.0 L container contains both H_{2} gas and N_{2} gas, with $\mathrm{pH}_{2}=4.5$ atm and $\mathrm{pN} \mathrm{N}_{2}=1.5 \mathrm{~atm}$. The temperature is $25.0^{\circ} \mathrm{C}$ and no other gases are present.
a. If a spark is applied, the gases will react to form gaseous ammonia, NH_{3}. Will the total pressure inside the container go up, go down or remain unchanged as a result of the reaction, assuming constant temperature? Explain. (Hint: write the balanced equation)
b. Determine the partial pressure of NH_{3} gas after the reaction is complete.
c. Based on the balanced equation for this reaction, determine how the following changes would affect the direction of the equilibrium. Reaction is endothermic.
i. Increase pressure
iv. Decrease $\left[\mathrm{N}_{2}\right]$
ii. Decrease pressure
v. Increase $\left[\mathrm{H}_{2}\right]$
iii. Suddenly Increase
vi. Decrease $\left[\mathrm{NH}_{3}\right.$ temperature
3. Use the following equilibrium expressions to write a chemical equation for each
a. $\mathrm{K}=\frac{\left[A B_{2}\right]^{2}}{\left[A_{2}\right]\left[B_{2}\right]^{2}}$
b. $K=\frac{\left[A_{2} B_{3}\right]}{[A]^{2}[B]^{3}}$
4. A balloon is filled with helium at sea level. Describe what would happen to the balloon in each of the following scenarios (assume the balloon will never pop):
a. The balloon floats to a higher altitude
b. The balloon is placed in Liquid Nitrogen $\left(-196^{\circ} \mathrm{C}\right)$
c. The balloon is placed in a hyperbaric chamber which has a pressure of 2.5 atm .
d. The balloon is heated in a microwave
e. The balloon rides with you as you drive over a mountain range and back to sea level.
5. Fill in the missing variable:

	P_{1}	$\mathrm{~V}_{1}$	$\mathrm{~T}_{1}$	P_{2}	$\mathrm{~V}_{2}$	$\mathrm{~T}_{2}$
a	0.550 atm	1.1 L	265 K	$?$	3.501 L	$0.0^{\circ} \mathrm{C}$
b	880. torr	1250 mL	$5.04^{\circ} \mathrm{C}$	1.1 atm	$?$	298 K
c	$200 . \mathrm{mm} \mathrm{Hg}$	$3.8^{*} 10^{10} \mathrm{~nL}$	$-120^{\circ} \mathrm{C}$	100. torr	0.44 L	$?$

6. How many moles of gas would be in samples $5 a, 5 b$, and $5 c$.
