1. Magnesium metal will react with acid to release Hydrogen gas as in the following equation:

$$Mg_{(s)}$$
 + 2 $HCl_{(aq)}$ \rightarrow $MgCl_{2(aq)}$ + $H_{2(g)}$

- a. If 0.8712g Mg are reacted with ample HCl, how many grams of H₂ will be relased?
- b. At STP, how many Liters will the H₂ from part A occupy?
- c. H_2 will combust with O_2 as follows: $H_2 + O_2 \rightarrow 2 H_2O$ At STP, how many liters of $O_{2(g)}$ would be required to react with the H_2 from part A?
- 2. A sealed 4.0 L container contains both H_2 gas and N_2 gas, with pH_2 = 4.5 atm and pN_2 = 1.5 atm. The temperature is 25.0 °C and no other gases are present.
 - a. If a spark is applied, the gases will react to form gaseous ammonia, NH₃. Will the total pressure inside the container go up, go down or remain unchanged as a result of the reaction, assuming constant temperature? Explain. (Hint: write the balanced equation)
 - b. Determine the partial pressure of NH₃ gas after the reaction is complete.
 - c. Based on the balanced equation for this reaction, determine how the following changes would affect the direction of the equilibrium. Reaction is endothermic.

- temperature
- 3. Use the following equilibrium expressions to write a chemical equation for each

a.
$$K = \frac{[AB_2]^2}{[A_2][B_2]^2}$$

b.
$$K = \frac{[A_2 B_3]}{[A]^2 [B]^3}$$

- 4. A balloon is filled with helium at sea level. Describe what would happen to the balloon in each of the following scenarios (assume the balloon will never pop):
 - a. The balloon floats to a higher altitude
 - b. The balloon is placed in Liquid Nitrogen (-196°C)
 - c. The balloon is placed in a hyperbaric chamber which has a pressure of 2.5 atm.
 - d. The balloon is heated in a microwave
 - e. The balloon rides with you as you drive over a mountain range and back to sea level.
- 5. Fill in the missing variable:

	P_1	V_1	T ₁	P ₂	V ₂	T ₂
а	0.550 atm	1.1 L	265 K	,	3.501 L	0.0° C
b	880. torr	1250 mL	5.04°C	1.1 atm	,	298 K
С	200. mm Hg	3.8 * 10 ¹⁰ nL	-120°C	100. torr	0.44 L	,

6. How many moles of gas would be in samples 5a, 5b, and 5c.