1. If a gas sample increases from 1.28 L to 16.3 L at a constant temperature, by what factor will the pressure change?
2. A sample of neon gas occupies a volume of 7.17 L at $60^{\circ} \mathrm{C}$ and 384 torr. If the volume of the gas sample is decreased to 4.84 L , while its temperature is increased to $134^{\circ} \mathrm{C}$, what will the final pressure be?
3. Which of the following gas samples would have the largest volume, if all samples are at the same temperature and pressure?

4. How many moles of gas would occupy a $1.8 \cdot 10^{6} \mathrm{~L}$ hot air balloon at $110^{\circ} \mathrm{C}$ open to the sea level atmosphere?
5. What volume would be occupied by the evaporation (sublimation) of 22.39 g of Dry Ice $\left(\mathrm{CO}_{2(\mathrm{~s})}\right)$ at STP?
6. A submersible balloon that occupies 175 L on the surface at 1 atm and $25^{\circ} \mathrm{C}$ is lowered 185 m into the ocean until the pressure is 18.2 atm and the temperature $3^{\circ} \mathrm{C}$. What will the volume of the balloon be at this depth?
7. A 1.0 L container with inflexible, rigid sides is open at sea level ($\mathrm{P}=760 \mathrm{Torr}, \mathrm{T}=21.0$ ${ }^{\circ} \mathrm{C}$). The flask is sealed and transported to a higher elevation where the air pressure is 730 Torr and the temperature is $2.0^{\circ} \mathrm{C}$.
a. What is the pressure inside the flask at the new location? Show work.
b. Will air enter or leave the flask when it is opened? Explain.
8. A car's airbag is inflated with Nitrogen gas via a chemical decomposition of the compound Sodium Azide with Iron (III) Oxide. The reaction is as follows:

$$
\mathrm{NaN}_{3(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{Fe}_{(\mathrm{s})}
$$

a. Balance the equation
b. calculate molar masses
c. How many grams of $\mathrm{NaN}_{3(\mathrm{~g})}$ are required to release 75 L worth of N_{2} gas?

